Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
EBioMedicine ; 92: 104606, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2317766
2.
Psychoanalytic Inquiry ; 43(1):13-23, 2023.
Article in English | APA PsycInfo | ID: covidwho-2271150

ABSTRACT

The accessibility of the digital world and of remote analysis via Telehealth poses ever more cogent questions for psychoanalysis. One major frontier is undoubtedly characterized by the use of remote analysis (teleanalysis), especially in a time where the pandemic of the Coronavirus has caused a necessary increase of the use of this tool in our discipline, with a parallel increase of the issues concerning this area, where transformations, which initiate symbolic and representational activity, involve affective states that have not been represented and are therefore asymbolic inside the body. Some clinical illustrations will illustrate experience where the digital dimension becomes the core content of the session, that is to say during a remote analysis, thanks also to the specific use of all this material as a psychic and allusive derivative for which we construct the possibility of symbolisation and comprehension. What seems fundamental is the readiness of the analyst and the patient to accept every manifestation of the "remote" setting within the analytic elaboration of the couple at work, and the possibility of better understanding the psychoanalytic nature of teleanalysis and the stance to be adopted in relation to it. (PsycInfo Database Record (c) 2023 APA, all rights reserved)

3.
mBio ; : e0337921, 2022 Jan 11.
Article in English | MEDLINE | ID: covidwho-2259785

ABSTRACT

The ongoing pandemic of coronavirus (CoV) disease 2019 (COVID-19) continues to exert a significant burden on health care systems worldwide. With limited treatments available, vaccination remains an effective strategy to counter transmission of severe acute respiratory syndrome CoV 2 (SARS-CoV-2). Recent discussions concerning vaccination strategies have focused on identifying vaccine platforms, number of doses, route of administration, and time to reach peak immunity against SARS-CoV-2. Here, we generated a single-dose, fast-acting vesicular stomatitis virus (VSV)-based vaccine derived from the licensed Ebola virus (EBOV) vaccine rVSV-ZEBOV, expressing the SARS-CoV-2 spike protein and the EBOV glycoprotein (VSV-SARS2-EBOV). Rhesus macaques vaccinated intramuscularly (i.m.) with a single dose of VSV-SARS2-EBOV were protected within 10 days and did not show signs of COVID-19 pneumonia. In contrast, intranasal (i.n.) vaccination resulted in limited immunogenicity and enhanced COVID-19 pneumonia compared to results for control animals. While both i.m. and i.n. vaccination induced neutralizing antibody titers, only i.m. vaccination resulted in a significant cellular immune response. RNA sequencing data bolstered these results by revealing robust activation of the innate and adaptive immune transcriptional signatures in the lungs of i.m. vaccinated animals only. Overall, the data demonstrate that VSV-SARS2-EBOV is a potent single-dose COVID-19 vaccine candidate that offers rapid protection based on the protective efficacy observed in our study. IMPORTANCE The vesicular stomatitis virus (VSV) vaccine platform rose to fame in 2019, when a VSV-based Ebola virus (EBOV) vaccine was approved by the European Medicines Agency and the U.S. Food and Drug Administration for human use against the deadly disease. Here, we demonstrate the protective efficacy of a VSV-EBOV-based COVID-19 vaccine against challenge in nonhuman primates (NHPs). When a single dose of the VSV-SARS2-EBOV vaccine was administered intramuscularly (i.m.), the NHPs were protected from COVID-19 within 10 days. In contrast, if the vaccine was administered intranasally, there was no benefit from the vaccine and the NHPs developed pneumonia. The i.m. vaccinated NHPs quickly developed antigen-specific IgG, including neutralizing antibodies. Transcriptional analysis highlighted the development of protective innate and adaptive immune responses in the i.m. vaccination group only.

4.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2102383

ABSTRACT

Successful vaccine efforts countering the COVID-19 pandemic are centralized around the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein as viral antigen and have greatly reduced the morbidity and mortality associated with COVID-19. Since the start of this pandemic, SARS-CoV-2 has evolved resulting in new variants of concern (VOC) challenging the vaccine-established immunologic memory. We show that vaccination with a vesicular stomatitis virus (VSV)-based vaccine expressing the SARS-CoV-2 S plus the conserved nucleocapsid (N) protein was protective in a hamster challenge model when a single dose was administered 28 or 10 days prior to challenge, respectively. In this study, only intranasal vaccination resulted in protection against challenge with multiple VOC highlighting that the addition of the N protein indeed improved protective efficacy. This data demonstrates the ability of a VSV-based dual-antigen vaccine to reduce viral shedding and protect from disease caused by SARS-CoV-2 VOC.

5.
Front Immunol ; 13: 963023, 2022.
Article in English | MEDLINE | ID: covidwho-2022747

ABSTRACT

The COVID-19 pandemic response has shown how vaccine platform technologies can be used to rapidly and effectively counteract a novel emerging infectious disease. The speed of development for mRNA and vector-based vaccines outpaced those of subunit vaccines, however, subunit vaccines can offer advantages in terms of safety and stability. Here we describe a subunit vaccine platform technology, the molecular clamp, in application to four viruses from divergent taxonomic families: Middle Eastern respiratory syndrome coronavirus (MERS-CoV), Ebola virus (EBOV), Lassa virus (LASV) and Nipah virus (NiV). The clamp streamlines subunit antigen production by both stabilising the immunologically important prefusion epitopes of trimeric viral fusion proteins while enabling purification without target-specific reagents by acting as an affinity tag. Conformations for each viral antigen were confirmed by monoclonal antibody binding, size exclusion chromatography and electron microscopy. Notably, all four antigens tested remained stable over four weeks of incubation at 40°C. Of the four vaccines tested, a neutralising immune response was stimulated by clamp stabilised MERS-CoV spike, EBOV glycoprotein and NiV fusion protein. Only the clamp stabilised LASV glycoprotein precursor failed to elicit virus neutralising antibodies. MERS-CoV and EBOV vaccine candidates were both tested in animal models and found to provide protection against viral challenge.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , Humans , Pandemics , Spike Glycoprotein, Coronavirus , Technology , Vaccines, Subunit
6.
Microbiol Spectr ; 10(2): e0155321, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1759307

ABSTRACT

Antibody-dependent enhancement (ADE) of infection is generally known for many viruses. A potential risk of ADE in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has also been discussed since the beginning of the coronavirus disease 2019 (COVID-19) pandemic; however, clinical evidence of the presence of antibodies with ADE potential is limited. Here, we show that ADE antibodies are produced by SARS-CoV-2 infection and the ADE process can be mediated by at least two different host factors, Fcγ receptor (FcγR) and complement component C1q. Of 89 serum samples collected from acute or convalescent COVID-19 patients, 62.9% were found to be positive for SARS-CoV-2-specific IgG. FcγR- and/or C1q-mediated ADE were detected in 50% of the IgG-positive sera, whereas most of them showed neutralizing activity in the absence of FcγR and C1q. Importantly, ADE antibodies were found in 41.4% of the acute COVID-19 patients. Neutralizing activity was also detected in most of the IgG-positive sera, but it was counteracted by ADE in subneutralizing conditions in the presence of FcγR or C1q. Although the clinical importance of ADE needs to be further investigated with larger numbers of COVID-19 patient samples, our data suggest that SARS-CoV-2 utilizes multiple mechanisms of ADE. C1q-mediated ADE may particularly have a clinical impact since C1q is present at high concentrations in plasma and its receptors are ubiquitously expressed on the surfaces of many types of cells, including respiratory epithelial cells, which SARS-CoV-2 primarily infects. IMPORTANCE Potential risks of antibody-dependent enhancement (ADE) in the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been discussed and the proposed mechanism mostly depends on the Fc gamma receptor (FcγR). However, since FcγRs are exclusively expressed on immune cells, which are not primary targets of SARS-CoV-2, the clinical importance of ADE of SARS-CoV-2 infection remains controversial. Our study demonstrates that SARS-CoV-2 infection induces antibodies that increase SARS-CoV-2 infection through another ADE mechanism in which complement component C1q mediates the enhancement. Although neutralizing activity was also detected in the serum samples, it was counteracted by ADE in the presence of FcγR or C1q. Considering the ubiquity of C1q and its cellular receptors, C1q-mediated ADE may more likely occur in respiratory epithelial cells, which SARS-CoV-2 primarily infects. Our data highlight the importance of careful monitoring of the antibody properties in COVID-19 convalescent and vaccinated individuals.


Subject(s)
Antibody-Dependent Enhancement , COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , Complement C1q , Humans , Immunoglobulin G , Receptors, IgG , SARS-CoV-2
7.
Vaccines (Basel) ; 10(3)2022 Mar 12.
Article in English | MEDLINE | ID: covidwho-1742755

ABSTRACT

The continued progression of the COVID-19 pandemic can partly be attributed to the ability of SARS-CoV-2 to mutate and introduce new viral variants. Some of these variants with the potential to spread quickly and conquer the globe are termed variants of concern (VOC). The existing vaccines implemented on a global scale are based on the ancestral strain, which has resulted in increased numbers of breakthrough infections as these VOC have emerged. It is imperative to show protection against VOC infection with newly developed vaccines. Previously, we evaluated two vesicular stomatitis virus (VSV)-based vaccines expressing the SARS-CoV-2 spike protein alone (VSV-SARS2) or in combination with the Ebola virus glycoprotein (VSV-SARS2-EBOV) and demonstrated their fast-acting potential. Here, we prolonged the time to challenge; we vaccinated hamsters intranasally (IN) or intramuscularly 28 days prior to infection with three SARS-CoV-2 VOC-the Alpha, Beta, and Delta variants. IN vaccination with either the VSV-SARS2 or VSV-SARS2-EBOV resulted in the highest protective efficacy as demonstrated by decreased virus shedding and lung viral load of vaccinated hamsters. Histopathologic analysis of the lungs revealed the least amount of lung damage in the IN-vaccinated animals regardless of the challenge virus. This data demonstrates the ability of a VSV-based vaccine to not only protect from disease caused by SARS-CoV-2 VOC but also reduce viral shedding.

8.
Sci Rep ; 12(1): 3954, 2022 03 10.
Article in English | MEDLINE | ID: covidwho-1740473

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results in a variety of clinical symptoms ranging from no or mild to severe disease. Currently, there are multiple postulated mechanisms that may push a moderate to severe disease into a critical state. Human serum contains abundant evidence of the immune status following infection. Cytokines, chemokines, and antibodies can be assayed to determine the extent to which a patient responded to a pathogen. We examined serum and plasma from a cohort of patients infected with SARS-CoV-2 early in the pandemic and compared them to negative-control sera. Cytokine and chemokine concentrations varied depending on the severity of infection, and antibody responses were significantly increased in severe cases compared to mild to moderate infections. Neutralization data revealed that patients with high titers against an early 2020 SARS-CoV-2 isolate had detectable but limited neutralizing antibodies against the emerging SARS-CoV-2 Alpha, Beta and Delta variants. This study highlights the potential of re-infection for recovered COVID-19 patients.


Subject(s)
Broadly Neutralizing Antibodies/immunology , COVID-19/virology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/immunology , Chemokines/blood , Cytokines/blood , Female , Humans , Male , Middle Aged , Patient Acuity , Young Adult
9.
Microorganisms ; 10(3)2022 Mar 09.
Article in English | MEDLINE | ID: covidwho-1732126

ABSTRACT

Before December 2019 and the COVID-19 pandemic, the general public was to some extent aware that zoonotic viruses can spill over into the human population and cause a disease outbreak [...].

10.
Front Immunol ; 12: 788235, 2021.
Article in English | MEDLINE | ID: covidwho-1650090

ABSTRACT

The ongoing COVID-19 pandemic has resulted in global effects on human health, economic stability, and social norms. The emergence of viral variants raises concerns about the efficacy of existing vaccines and highlights the continued need for the development of efficient, fast-acting, and cost-effective vaccines. Here, we demonstrate the immunogenicity and protective efficacy of two vesicular stomatitis virus (VSV)-based vaccines encoding the SARS-CoV-2 spike protein either alone (VSV-SARS2) or in combination with the Ebola virus glycoprotein (VSV-SARS2-EBOV). Intranasally vaccinated hamsters showed an early CD8+ T cell response in the lungs and a greater antigen-specific IgG response, while intramuscularly vaccinated hamsters had an early CD4+ T cell and NK cell response. Intranasal vaccination resulted in protection within 10 days with hamsters not showing clinical signs of pneumonia when challenged with three different SARS-CoV-2 variants. This data demonstrates that VSV-based vaccines are viable single-dose, fast-acting vaccine candidates that are protective from COVID-19.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Ebolavirus/immunology , Pandemics/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods , Vesicular stomatitis Indiana virus/immunology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Cricetinae , Disease Models, Animal , Ebolavirus/genetics , Female , Humans , Immunogenicity, Vaccine , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Plasmids , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes/immunology , Treatment Outcome , Vero Cells , Vesicular stomatitis Indiana virus/genetics
11.
EBioMedicine ; 73: 103675, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1596532

ABSTRACT

BACKGROUND: Following the discovery of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its rapid spread throughout the world, new viral variants of concern (VOC) have emerged. There is a critical need to understand the impact of the emerging variants on host response and disease dynamics to facilitate the development of vaccines and therapeutics. METHODS: Syrian golden hamsters are the leading small animal model that recapitulates key aspects of severe coronavirus disease 2019 (COVID-19). We performed intranasal inoculation of SARS-CoV-2 into hamsters with the ancestral virus (nCoV-WA1-2020) or VOC first identified in the United Kingdom (B.1.1.7, alpha) and South Africa (B.1.351, beta) and analyzed viral loads and host responses. FINDINGS: Similar gross and histopathologic pulmonary lesions were observed after infection with all three variants. Although differences in viral genomic copy numbers were noted in the lungs and oral swabs of challenged animals, infectious titers in the lungs were comparable between the variants. Antibody neutralization capacities varied, dependent on the original challenge virus and cross-variant protective capacity. Transcriptional profiling of lung samples 4 days post-challenge (DPC) indicated significant induction of antiviral pathways in response to all three challenges with a more robust inflammatory signature in response to B.1.1.7 infection. Furthermore, no additional mutations in the spike protein were detected at 4 DPC. INTERPRETATIONS: Although disease severity and viral shedding were not significantly different, the emerging VOC induced distinct humoral responses and transcriptional profiles compared to the ancestral virus. These observations suggest potential differences in acute early responses or alterations in immune modulation by VOC. FUNDING: Intramural Research Program, NIAID, NIH; National Center for Research Resources, NIH; National Center for Advancing Translational Sciences, NIH.


Subject(s)
COVID-19/pathology , SARS-CoV-2/isolation & purification , Transcriptome , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/virology , Cricetinae , Dendritic Cells/cytology , Dendritic Cells/metabolism , Disease Models, Animal , Female , Immunity, Humoral , Lung/metabolism , Lung/pathology , Lung/virology , Mesocricetus , Mouth/pathology , Mouth/virology , Nucleocapsid Proteins/metabolism , RNA, Viral/analysis , RNA, Viral/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
12.
Lancet Infect Dis ; 21(8): e222-e233, 2021 08.
Article in English | MEDLINE | ID: covidwho-1595466

ABSTRACT

For the past 20 years, the notion of bioterror has been a source of considerable fear and panic worldwide. In response to the terror attacks of 2001 in the USA, extensive research funding was awarded to investigate bioterror-related pathogens. The global scientific legacy of this funding has extended into the present day, highlighted by the ongoing COVID-19 pandemic. Unsurprisingly, the surge in biodefence-related research and preparedness has been met with considerable apprehension and opposition. Here, we briefly outline the history of modern bioterror threats and biodefence research, describe the scientific legacy of biodefence research by highlighting advances pertaining to specific bacterial and viral pathogens, and summarise the future of biodefence research and its relevance today. We sought to address the sizeable question: have the past 20 years of investment into biodefence research and preparedness been worth it? The legacy of modern biodefence funding includes advancements in biosecurity, biosurveillence, diagnostics, medical countermeasures, and vaccines. In summary, we feel that these advances justify the substantial biodefence funding trend of the past two decades and set a precedent for future funding.


Subject(s)
Biomedical Research/economics , Bioterrorism/prevention & control , Financial Support , Humans , Investments , Risk Assessment , Vaccines/immunology
13.
Vaccine X ; : 100126, 2021 Nov 05.
Article in English | MEDLINE | ID: covidwho-1500106

ABSTRACT

The speed at which several COVID-19 vaccines went from conception to receiving FDA and EMA approval for emergency use is an achievement unrivaled in the history of vaccine development. Mass vaccination efforts using the highly effective vaccines are currently underway to generate sufficient herd immunity and reduce transmission of the SARS-CoV-2 virus. Despite the most advanced vaccine technology, global recipient coverage, especially in resource-poor areas remains a challenge as genetic drift in naïve population pockets threatens overall vaccine efficacy. In this study, we described the production of insect-cell expressed SARS-CoV-2 spike protein ectodomain constructs and examined their immunogenicity in mice. We demonstrated that, when formulated with CoVaccine HTTM adjuvant, an oil-in-water nanoemulsion compatible with lyophilization, our vaccine candidates elicit a broad-spectrum IgG response, high neutralizing antibody (NtAb) titers against SARS-CoV-2 prototype and variants of concern, specifically B.1.351 (Beta) and P.1. (Gamma), and an antigen-specific IFN-γ secreting response in outbred mice. Of note, different ectodomain constructs yielded variations in NtAb titers against the prototype strain and some VOC. Dose response experiments indicated that NtAb titers increased with antigen dose, but not adjuvant dose, and may be higher with a lower adjuvant dose. Our findings lay the immunological foundation for the development of a dry-thermostabilized vaccine that is deployable without refrigeration.

14.
Vaccines (Basel) ; 9(6)2021 Jun 10.
Article in English | MEDLINE | ID: covidwho-1282654

ABSTRACT

Ebola virus (EBOV) is the cause of sporadic outbreaks of human hemorrhagic disease in Africa, and the best-characterized virus in the filovirus family. The West African epidemic accelerated the clinical development of vaccines and therapeutics, leading to licensure of vaccines and antibody-based therapeutics for human use in recent years. The most widely used vaccine is based on vesicular stomatitis virus (VSV) expressing the EBOV glycoprotein (GP) (VSV-EBOV). Due to its favorable immune cell targeting, this vaccine has also been used as a base vector for the development of second generation VSV-based vaccines against Influenza, Nipah, and Zika viruses. However, in these situations, it may be beneficial if the immunogenicity against EBOV GP is minimized to induce a better protective immune response against the other foreign immunogen. Here, we analyzed if EBOV GP can be truncated to be less immunogenic, yet still able to drive replication of the vaccine vector. We found that the EBOV GP glycan cap and the mucin-like domain are both dispensable for VSV-EBOV replication. The glycan cap, however, appears critical for mediating a protective immune response against lethal EBOV challenge in mice.

15.
Emerg Microbes Infect ; 10(1): 1320-1330, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1266083

ABSTRACT

Ebola virus (EBOV) is a negative single-stranded RNA virus within the Filoviridae family and the causative agent of Ebola virus disease (EVD). Nonhuman primates (NHPs), including cynomolgus and rhesus macaques, are considered the gold standard animal model to interrogate mechanisms of EBOV pathogenesis. However, despite significant genetic similarity (>90%), NHP species display different clinical presentation following EBOV infection, notably a ∼1-2 days delay in disease progression. Consequently, evaluation of therapeutics is generally conducted in rhesus macaques, whereas cynomolgus macaques are utilized to determine efficacy of preventative treatments, notably vaccines. This observation is in line with reported differences in disease severity and host responses between these two NHP following infection with simian varicella virus, influenza A and SARS-CoV-2. However, the molecular underpinnings of these differential outcomes following viral infections remain poorly defined. In this study, we compared published transcriptional profiles obtained from cynomolgus and rhesus macaques infected with the EBOV-Makona Guinea C07 using bivariate and regression analyses to elucidate differences in host responses. We report the presence of a shared core of differentially expressed genes (DEGs) reflecting EVD pathology, including aberrant inflammation, lymphopenia, and coagulopathy. However, the magnitudes of change differed between the two macaque species. These findings suggest that the differential clinical presentation of EVD in these two species is mediated by altered transcriptional responses.


Subject(s)
Gene Expression Regulation/immunology , Hemorrhagic Fever, Ebola/veterinary , Macaca fascicularis , Macaca mulatta , Monkey Diseases/immunology , Transcription, Genetic/immunology , Animals , COVID-19 , Ebolavirus , Hemorrhagic Fever, Ebola/genetics , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/mortality , Humans , Immunity , Monkey Diseases/genetics , Monkey Diseases/mortality , RNA, Viral/metabolism , SARS-CoV-2 , Species Specificity
16.
PLoS Negl Trop Dis ; 14(10): e0008699, 2020 10.
Article in English | MEDLINE | ID: covidwho-932350

ABSTRACT

Surveillance of highly pathogenic viruses circulating in both human and animal populations is crucial to unveil endemic infections and potential zoonotic reservoirs. Monitoring the burden of disease by serological assay could be used as an early warning system for imminent outbreaks as an increased seroprevalance often precedes larger outbreaks. However, the multitude of highly pathogenic viruses necessitates the need to identify specific antibodies against several targets from both humans as well as from potential reservoir animals such as bats. In order to address this, we have developed a broadly reactive multiplex microsphere immunoassay (MMIA) for the detection of antibodies against several highly pathogenic viruses from both humans and animals. To this aim, nucleoproteins (NP) of Ebola virus (EBOV), Marburg virus (MARV) and nucleocapsid proteins (NP) of Crimean-Congo haemorrhagic fever virus, Rift Valley fever virus and Dobrava-Belgrade hantavirus were employed in a 5-plex assay for IgG detection. After optimisation, specific binding to each respective NP was shown by testing sera from humans and non-human primates with known infection status. The usefulness of our assay for serosurveillance was shown by determining the immune response against the NP antigens in a panel of 129 human serum samples collected in Guinea between 2011 and 2012 in comparison to a panel of 88 sera from the German blood bank. We found good agreement between our MMIA and commercial or in-house reference methods by ELISA or IIFT with statistically significant higher binding to both EBOV NP and MARV NP coupled microspheres in the Guinea panel. Finally, the MMIA was successfully adapted to detect antibodies from bats that had been inoculated with EBOV- and MARV- virus-like particles, highlighting the versatility of this technique and potentially enabling the monitoring of wildlife as well as human populations with this assay. We were thus able to develop and validate a sensitive and broadly reactive high-throughput serological assay which could be used as a screening tool to detect antibodies against several highly pathogenic viruses.


Subject(s)
Antibodies, Viral/blood , Immunoassay/methods , Microspheres , Nucleocapsid Proteins/immunology , Virus Diseases/veterinary , Animals , Chiroptera , Humans , Primates , Virus Diseases/diagnosis , Virus Diseases/virology
17.
PLoS Pathog ; 17(1): e1009195, 2021 01.
Article in English | MEDLINE | ID: covidwho-1034958

ABSTRACT

SARS-CoV-2 emerged in late 2019 and resulted in the ongoing COVID-19 pandemic. Several animal models have been rapidly developed that recapitulate the asymptomatic to moderate disease spectrum. Now, there is a direct need for additional small animal models to study the pathogenesis of severe COVID-19 and for fast-tracked medical countermeasure development. Here, we show that transgenic mice expressing the human SARS-CoV-2 receptor (angiotensin-converting enzyme 2 [hACE2]) under a cytokeratin 18 promoter (K18) are susceptible to SARS-CoV-2 and that infection resulted in a dose-dependent lethal disease course. After inoculation with either 104 TCID50 or 105 TCID50, the SARS-CoV-2 infection resulted in rapid weight loss in both groups and uniform lethality in the 105 TCID50 group. High levels of viral RNA shedding were observed from the upper and lower respiratory tract and intermittent shedding was observed from the intestinal tract. Inoculation with SARS-CoV-2 resulted in upper and lower respiratory tract infection with high infectious virus titers in nasal turbinates, trachea and lungs. The observed interstitial pneumonia and pulmonary pathology, with SARS-CoV-2 replication evident in pneumocytes, were similar to that reported in severe cases of COVID-19. SARS-CoV-2 infection resulted in macrophage and lymphocyte infiltration in the lungs and upregulation of Th1 and proinflammatory cytokines/chemokines. Extrapulmonary replication of SARS-CoV-2 was observed in the cerebral cortex and hippocampus of several animals at 7 DPI but not at 3 DPI. The rapid inflammatory response and observed pathology bears resemblance to COVID-19. Additionally, we demonstrate that a mild disease course can be simulated by low dose infection with 102 TCID50 SARS-CoV-2, resulting in minimal clinical manifestation and near uniform survival. Taken together, these data support future application of this model to studies of pathogenesis and medical countermeasure development.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , COVID-19/pathology , Keratin-18/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , COVID-19/immunology , COVID-19/virology , Disease Models, Animal , Female , Humans , Keratin-18/immunology , Lung/immunology , Lung/pathology , Lymphocytes/immunology , Macrophages/immunology , Male , Mice , Mice, Transgenic , Promoter Regions, Genetic , SARS-CoV-2/physiology , Trachea/immunology , Trachea/virology
18.
bioRxiv ; 2020 Aug 11.
Article in English | MEDLINE | ID: covidwho-721090

ABSTRACT

SARS-CoV-2 emerged in late 2019 and resulted in the ongoing COVID-19 pandemic. Several animal models have been rapidly developed that recapitulate the asymptomatic to moderate disease spectrum. Now, there is a direct need for additional small animal models to study the pathogenesis of severe COVID-19 and for fast-tracked medical countermeasure development. Here, we show that transgenic mice expressing the human SARS-CoV-2 receptor (angiotensin-converting enzyme 2 [hACE2]) under a cytokeratin 18 promoter (K18) are susceptible to SARS-CoV-2 and that infection resulted in a dose-dependent lethal disease course. After inoculation with either 10 4 TCID 50 or 10 5 TCID 50 , the SARS-CoV-2 infection resulted in rapid weight loss in both groups and uniform lethality in the 10 5 TCID 50 group. High levels of viral RNA shedding were observed from the upper and lower respiratory tract and intermittent shedding was observed from the intestinal tract. Inoculation with SARS-CoV-2 resulted in upper and lower respiratory tract infection with high infectious virus titers in nasal turbinates, trachea and lungs. The observed interstitial pneumonia and pulmonary pathology, with SARS-CoV-2 replication evident in pneumocytes, were similar to that reported in severe cases of COVID-19. SARS-CoV-2 infection resulted in macrophage and lymphocyte infiltration in the lungs and upregulation of Th1 and proinflammatory cytokines/chemokines. Extrapulmonary replication of SARS-CoV-2 was observed in the cerebral cortex and hippocampus of several animals at 7 DPI but not at 3 DPI. The rapid inflammatory response and observed pathology bears resemblance to COVID-19. Taken together, this suggests that this mouse model can be useful for studies of pathogenesis and medical countermeasure development. AUTHORS SUMMARY: The disease manifestation of COVID-19 in humans range from asymptomatic to severe. While several mild to moderate disease models have been developed, there is still a need for animal models that recapitulate the severe and fatal progression observed in a subset of patients. Here, we show that humanized transgenic mice developed dose-dependent disease when inoculated with SARS-CoV-2, the etiological agent of COVID-19. The mice developed upper and lower respiratory tract infection, with virus replication also in the brain after day 3 post inoculation. The pathological and immunological diseases manifestation observed in these mice bears resemblance to human COVID-19, suggesting increased usefulness of this model for elucidating COVID-19 pathogenesis further and testing of countermeasures, both of which are urgently needed.

19.
Nat Microbiol ; 5(4): 562-569, 2020 04.
Article in English | MEDLINE | ID: covidwho-1966

ABSTRACT

Over the past 20 years, several coronaviruses have crossed the species barrier into humans, causing outbreaks of severe, and often fatal, respiratory illness. Since SARS-CoV was first identified in animal markets, global viromics projects have discovered thousands of coronavirus sequences in diverse animals and geographic regions. Unfortunately, there are few tools available to functionally test these viruses for their ability to infect humans, which has severely hampered efforts to predict the next zoonotic viral outbreak. Here, we developed an approach to rapidly screen lineage B betacoronaviruses, such as SARS-CoV and the recent SARS-CoV-2, for receptor usage and their ability to infect cell types from different species. We show that host protease processing during viral entry is a significant barrier for several lineage B viruses and that bypassing this barrier allows several lineage B viruses to enter human cells through an unknown receptor. We also demonstrate how different lineage B viruses can recombine to gain entry into human cells, and confirm that human ACE2 is the receptor for the recently emerging SARS-CoV-2.


Subject(s)
Betacoronavirus/physiology , Peptidyl-Dipeptidase A/metabolism , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/chemistry , Betacoronavirus/classification , CD13 Antigens/metabolism , COVID-19 , Cell Line , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Dipeptidyl Peptidase 4/metabolism , Humans , Mutation , Pandemics , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Protein Domains , Receptors, Coronavirus , Receptors, Virus/chemistry , Receptors, Virus/genetics , Recombinant Fusion Proteins/metabolism , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/physiology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Trypsin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL